Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Atmospheric Environment ; 302 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2295206

ABSTRACT

Acid deposition and particulate matter (PM) pollution have declined considerably in China. Although metal(loid) and acid deposition and PM have many common sources, the changes of metal(loid) deposition in China in the recent decade have not been well explored by using long-term monitoring. Therefore, we analyzed the dry and wet deposition of eleven metal(loid)s (including Al, As, Ba, Cd, Cu, Cr, Fe, Mn, Pb, Sr, and Zn) from 2017 to 2021 at Mount Emei, which is adjacent to the most economic-developed region in western China (Sichuan Basin (SCB)). Anthropogenic emissions contributed to over 80% of the annual wet deposition fluxes of metal(loid)s and acids (SO4 2-, NO3 -, and NH4 +) at Mount Emei, and the major source regions were the SCB, the Yunnan-Guizhou Plateau, and Gansu Province. Metal(loid) and acid deposition had similar seasonal variations with higher wet deposition fluxes in summer but higher wet deposition concentrations and dry fluxes in winter. The seasonal variations were partially associated with higher precipitation but lower pH in summer (968 mm and 5.52, respectively) than in winter (47 mm and 4.73, respectively). From 2017 to 2021, metal(loid) deposition did not decline as substantially as acid deposition (5.6%-30.4%). Both the annual total deposition fluxes and concentrations of Cr, Cu, Sr, Ba, and Pb were even higher in 2020-2021 than in 2017-2018. The inter-annual and seasonal changes implied the responses of metal(loid) deposition to anthropogenic emission changes were buffered (e.g., transformation, dilution, and degradation) by precipitation rates, acidity, natural emissions, and chemical reactions in the atmosphere, among others.Copyright © 2023 Elsevier Ltd

2.
Alexandria Engineering Journal ; 62:193-210, 2023.
Article in English | Scopus | ID: covidwho-2245748

ABSTRACT

The mucus fluid vehicle is impacted by the synthetic response that changes the physical science of liquid due to the thickness of the bodily fluid. Additionally, various issues in the respiratory system might happen because of bodily fluid adequacy. A central point of transportation of immunizations to forestall COVID-19 is the concentration level expected during movement, stockpiling, and dispersion. The current review stated that mucus fluid transportation is restrained through magnetic force originating due to heat variation. Permeable channel over respiratory disease and chemicals due to mass reaction–diffusion variation. The bodily fluid development is surveyed by the force, energy, and diffusion condition influence of body powers because of attractive field, source of heat cause of thermal conduction, resistance due to disease chemical reaction cause of concentration profile. The nonlinear arrangement of incomplete differential conditions is addressed by the Laplace transform technique, and MATLAB programming outcomes are initiated for momentum, temperature, and diffusion fields and inferred that the bodily fluid stream decelerates due to magnetic force. The skin friction, Nusselt number, Sherwood number, and the microorganism's thickness are assessed and explained exhaustively. Furthermore, microorganisms are occupied in different elements to survey the mucus fluid mechanism. © 2022

3.
OpenNano ; 9, 2023.
Article in English | EMBASE | ID: covidwho-2244461

ABSTRACT

Biomimetic strategies can be adopted to improve biopharmaceutical aspects. Subsequently, Biomimetic reconstitutable pegylated amphiphilic lipid nanocarriers have high translational potential for systemic controlled drug delivery;however, such an improvised system for systemic aspirin delivery exploring nanotechnology is not available. Systemic administration of aspirin and its controlled delivery can significantly control blood clotting events, leading to stroke, which has immediate applications in cardiovascular diseases and Covid-19. In this work, we are developing aspirin sustained release pegylated amphiphilic self-assembling nanoparticles to develop reconstitutable aspirin injections by solvent-based co-precipitation method with phase inversion technique that leads to novel "biomimetic niosomal nanoparticles (BNNs).” DOE led optimization is done to develop Design of space for optimized particles. Upon reconstitution of solid powder, the particle size was 144.8 ± 12.90 nm with a surface charge of -29.2 ± 2.24 mV. The entrapment efficiency was found to be 49 ± 0.15%, wherein 96.99 ± 1.57% of the drug was released in 24hr showing super case II transport-based drug release mechanism. The formulation has the least hemolysis while showing significant suppression of platelet aggregation. MTT assay does not show any significant cytotoxicity. This is a potential nanoparticle that can be explored for developing aspirin injection, which is not available.

4.
Alexandria Engineering Journal ; 2022.
Article in English | ScienceDirect | ID: covidwho-1906643

ABSTRACT

The mucus fluid vehicle is impacted by the synthetic response that changes the physical science of liquid due to the thickness of the bodily fluid. Additionally, various issues in the respiratory system might happen because of bodily fluid adequacy. A central point of transportation of immunizations to forestall COVID-19 is the concentration level expected during movement, stockpiling, and dispersion. The current review stated that mucus fluid transportation is restrained through magnetic force originating due to heat variation. Permeable channel over respiratory disease and chemicals due to mass reaction–diffusion variation. The bodily fluid development is surveyed by the force, energy, and diffusion condition influence of body powers because of attractive field, source of heat cause of thermal conduction, resistance due to disease chemical reaction cause of concentration profile. The nonlinear arrangement of incomplete differential conditions is addressed by the Laplace transform technique, and MATLAB programming outcomes are initiated for momentum, temperature, and diffusion fields and inferred that the bodily fluid stream decelerates due to magnetic force. The skin friction, Nusselt number, Sherwood number, and the microorganism’s thickness are assessed and explained exhaustively. Furthermore, microorganisms are occupied in different elements to survey the mucus fluid mechanism.

5.
ACS Nano ; 16(5): 7168-7196, 2022 05 24.
Article in English | MEDLINE | ID: covidwho-1805555

ABSTRACT

There is a growing interest in the development of lipid-based nanocarriers for multiple purposes, including the recent increase of these nanocarriers as vaccine components during the COVID-19 pandemic. The number of studies that involve the surface modification of nanocarriers to improve their performance (increase the delivery of a therapeutic to its target site with less off-site accumulation) is enormous. The present review aims to provide an overview of various methods associated with lipid nanoparticle grafting, including techniques used to separate grafted nanoparticles from unbound ligands or to characterize grafted nanoparticles. We also provide a critical perspective on the usefulness and true impact of these modifications on overcoming different biological barriers, with our prediction on what to expect in the near future in this field.


Subject(s)
COVID-19 , Nanoparticles , Humans , Drug Carriers , Pandemics , Lipids , Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL